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Abstract

Simulations of gas±solid ¯ows in a horizontal channel are presented. The transient motion of the
particle phase is computed using the Simultaneous Particle Tracking technique. Particle±particle
collisions are accounted for by applying a Stochastic model. Particle to gas mass loading ratio is varied
in the simulations from 0.01 upto 10. The in¯uence of inter-particle collisions on the particle
concentration distribution is investigated. Collisions are found to have a signi®cant e�ect on the
concentration distribution at moderate to high loading ratios. For high loading ratios, collisions tend to
enhance the formation of particle clusters. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the industrial ®elds of energy production and process engineering, there are many
applications involving gas-particle ¯ows, e.g. pneumatic conveying of granular material,
injection of pulverized fuel into burners or separation of solid particles from ¯ue gas. In
many cases, the particle loading is moderate to high and hence particle±particle
interactions signi®cantly in¯uence the ¯ow behaviour. But the average loading is not the
only measure for the importance of collisions. Even if the average loading in a particular
application is relatively low, there may be regions of locally high concentration, e.g. in
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``ropes'' that form behind pipe bends, where collisions may have a strong macroscopic
e�ect. Additionally, there are other factors that may increase the number and importance
of collisions. For instance, near obstacles and walls the di�erence of velocities of
impinging and rebounding particles may cause more collisions to occur. These examples
indicate that there are many situations in which the particle±particle collisions play a
signi®cant role and show the importance of taking these collisions into account in a
numerical simulation.
In the present paper, transient inhomogeneities in particle concentration distribution are

examined. These inhomogeneities are induced by inter-particle collisions. Considering the
pneumatic conveying of pulverized fuel to a burner, the consequence of such a time dependent
in-homogeneous concentration distribution is that the burner will not constantly work at
maximum e�ciency. Furthermore, pressure ¯uctuations may arise that may cause vibrations or
even damage. Hence it is important to understand, how inhomogeneities develop in time. The
present work investigates the in¯uence of particle loading on that e�ect for gas±solid ¯ows in a
horizontal channel.
Considering the Lagrangian type of simulation, i.e. the prediction of macroscopic properties

of the dispersed phase by numerically solving the Lagrangian equation of motion of individual
particles, various models have been proposed in order to account for inter-particle collisions.
The distinct models are closely related to the way, the Lagrangian method is applied, which
can be done in two principally di�erent ways:

1. Trajectory calculation (TC): A large number of individual particle trajectories is computed
successively. Each trajectory represents a constant ¯ow of particles with identical physical
properties. The macroscopic properties of the particulate phase for a certain cell of the
numerical mesh are computed by averaging over all trajectory segments that cross that cell.
The application of the TC method is limited to the computation of steady ¯ows.

2. Simultaneous particle tracking (SPT): In the SPT method, the motion of a representative
number of particles is calculated simultaneously. Each simulated particle represents a certain
number of real particles with identical physical properties. This simulation method is
inherently unsteady. The macroscopic properties of the particulate phase for a certain grid
cell can be obtained at any time by averaging over all particles that are located in that cell
at that point of time.

In order to take particle±particle collisions into account in the frame of the TC method
OesterleÂ and Petitjean (1991, 1993) presented an iterative simulation technique. In this
technique, the collisions were treated stochastically on the basis of macroscopic particle
properties obtained from the previous iteration. The technique was used to investigate a gas±
solid ¯ow in a horizontal pipe. The authors showed that collisions signi®cantly in¯uence the
vertical concentration pro®le.
In the frame of the SPT method, collisions can be computed either deterministically or

stochastically. Tanaka and Tsuji (1991) used a deterministic procedure to simulate a gas±solid
¯ow in a vertical pipe. They found that for higher particle loading, the horizontal
concentration distribution became more uniform compared to the dilute case. In their
deterministic procedure, a collisionless time step was carried out initially for all particles.
Thereafter for each pair of particles, it was examined whether these particles had collided
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during the time step and, if yes, the collision was computed. The computational e�ort for this
procedure is proportional to N 2, let N be the number of simulated particles. For this reason
and with respect to the computer resources currently available, the deterministic calculation of
collisions is of no practical relevance.
In majority of the applications of SPT method, collisions are treated stochastically. In that

case, it takes advantage of the analogy between the motion of dispersed particles in gas±solid
¯ows and the motion of molecules in dilute gas ¯ows. For simulating the latter, the direct
simulation Monte Carlo (DSMC) method was developed by Bird (1976, 1994). This simulation
technique is based on the decoupling of molecular motion and collisions: In each time step, the
collisionless motion of all the molecules is computed and after that a representative number of
collisions is carried out by employing some kind of Monte Carlo method. The DSMC method
has been applied to the simulation of gas-particle ¯ows by several authors. Kitron et al.
(1989,1990) investigated wall erosion, direct heat transfer and the concentration distribution of
impinging streams, respectively. Tanaka et al. (1991) and Yonemura et al. (1993) examined
gas-particle ¯ows in vertical channels. They observed that the ¯ow became unstable and in-
homogeneous, as the gas velocity decreased with the increase in particle loading.
The present paper presents results of transient simulations of gas-particle ¯ows in a

horizontal channel. The particle motion was computed using the SPT simulation technique.
Particle±particle collisions were accounted for by employing a stochastic model. Special
emphasis was put on investigating the e�ect of particle loading on the formation and
development of local regions of higher particle concentration, i.e. ``clusters'' of particles. A
numerical simulation provides the advantage that certain physical e�ects can be ``switched o�''
and thus e�ects can be studied seperately that cannot be segregated during an experiment. In
reality, in ¯ows with high loading inter-particle collisions as well as phase coupling play an
important role. In the present work, only the e�ect of collisions on cluster formation was
examined and the in¯uence of phase coupling was not considered.
The basic equations of ¯uid motion and their numerical solution are brie¯y described in

Section 2. In Section 3, the basic equations of particle motion are given. Furthermore, the
application of the SPT technique and the stochastic collision model are described in detail.
Finally in Section 4, results of test case calculations for the horizontal channel are presented
and the e�ect of loading and collisions on the cluster formation is discussed.

2. Simulation of ¯uid motion

The basic equations describing the motion of an incompressible and isothermal gas are the
continuity and the momentum equation. In the present work, the integral form of these
equations is the starting point for their numerical solution. The integral form is obtained by
formulating the mass and momentum balance for an in®nitesimal control volume. For the
present case the, continuity equation reads:�

S

rG~vG � ~n dS � 0, �1�

where rG is the gas density, ~vG is the gas velocity, S is the control volume's surface and ~n is the
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normal vector belonging to the surface element dS. The integral form of the momentum
equation reads:�

S

rG~vG~vG � ~n dS �
�
S

�
ÿ pI� t

�
� ~n dS�

�
O
rG~g dO, �2�

where p is the pressure, I is the unit tensor, t is the stress tensor, ~g is the gravitational
acceleration and O is the control volume. As already mentioned, in the present work the
motion of the gas phase is assumed to be steady and not a�ected by the presence of particles.
Hence Eqs. (1) and (2) neither contain any time dependent terms nor any terms for considering
mass or momentum transfer, respectively.
The above equations are solved numerically on the basis of Cartesian coordinates.

Turbulence is accounted for by using a standard kÿ e model. The ¯ow domain is discretized
using block-structured, non-orthogonal, boundary-®tted grids. For discretizing the conservation
equations, a ®nite-volume method is used along with a colocated variable arrangement.
Pressure-velocity coupling is realized by employing a SIMPLE algorithm.

3. Simulation of the particulate phase

The motion of every single particle in the gas-particle ¯ow is computed using the Lagrangian
approach. The particles are assumed to be solid spheres and the density ratio of particle
material and gas represented by rP=rG � 1: With that assumption, the Lagrangian equation of
motion for a single particle of mass mP reads:

mP
d~vP

dt
� ~FD � ~FM � ~FS � ~FGr, �3�

where ~vP is the particle velocity, t is the time and the ~Fi denote the forces acting on the
particle. The drag force ~FD is calculated as:

~FD � p
8
rGd

2
PcDvrel~vrel, �4�

with dP denotes the particle diameter, cD the drag coe�cient, ~vrel the relative velocity between
particle and gas and vrel its absolute value. The drag coe�cient cD depends on the particle
Reynolds number ReP:

ReP � dPvrel

nG

, �5�

with nG denotes the kinematic viscosity of the gas. In the present work, the values for cD

proposed by Morsi and Alexander (1972) were used. The Magnus force ~FM due to particle
rotation is obtained from:

~FM � p
8
rGd

2
PcM

vrel

orel

ÿ
~orel � ~vrel

�
, �6�
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where ~orel is the relative rotation between gas and particle:

~orel � ~oG ÿ ~oP, orel � j~orelj, �7�
with

~oG � r � ~vG � @vG

@x
ÿ @uG

@y
, oG � j~oGj, �8�

and the coe�cient cM was chosen according to Tsuji et al. (1985). The Sa�man force ~FS due to
a shear gradient in the gas ¯ow can be calculated from:

~FS � 1

4
rGd

2
P

�����
nG

p 1�������
oG
p cS

ÿ
~vrel � ~oG

�
, cS � 6:46: �9�

This expression was derived under the assumption of ReP � 1, whereas Eq. (6) is valid for
ReP � 550±1600: Therefore, these expressions are not consistent with each other. However,
since the range of particle Reynolds number for the present test case was not known a priori,
they were taken as an initial estimate of the transverse forces. This matter will be further
discussed in Section 4.2.
The gravitational force ~FGr is:

~FGr � mP~g � p
6
rPd

3
P~g: �10�

Other forces like added-mass force or Basset force can be neglected under the assumption of
rP=rG � 1:
In order to compute ~FM the particle's rotational velocity ~oP must be known. ~oP can be

calculated from:

IP
d ~oP

dt
� rG

2

�
dP

2

�5

coorel ~orel, �11�

where IP � 1=10mPd
2
P is the particle's moment of inertia and the right hand side of Eq. (11)

denotes the torque exerted on the particle by the ¯uid as proposed by Dennis et al. (1980).
The turbulent velocity ¯uctuations of the gas phase were accounted for by using the

Lagrangian Stochastic-deterministic (LSD) model by Milojevic (1990). The integral time scale
of ¯uid turbulence is obtained from:

TE � cE

k

e
, cE � 0:3, �12�

and the integral length scale is:

LE � TE

������
2

3
k

r
: �13�

The mean time, a particle takes to cross a turbulent eddy can be estimated by:
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TCr � LE

vrel

, �14�

and the mean interaction time Ti of a particle with a turbulent eddy is:

Ti � min�TE,TCr �: �15�
In order to simulate the wall roughness, a model employing an inclined virtual wall as

proposed by Sommerfeld (1992) was used. The wall model parameters used here are given in
Table 1.

3.1. The motion of the particle phase

3.1.1. Simulation principle
As already mentioned, the formation of particle clusters in gas-particle channel ¯ow was

investigated. Such kind of cluster formation was observed by Yonemura et al. (1993), who
examined upward ¯ows in vertical channels. In their simulation experiments, they inserted
particles at the bottom of the channels, maintaining a constant mass ¯ow. They found that in
the upper part of the channels, the ¯ow became in-homogeneous and unstable in space and
time, as the gas velocity decreased and the particle loading increased. Furthermore, Yonemura

Table 1
Physical and numerical simulation parameters

Property Symbol Value

Channel height h 0.03 m
Channel length l 0.8 m
Gas density rG 1.21 kg/m3

Kinematic viscosity of gas nG 1:48� 10ÿ5 m2/s
Gas bulk velocity UG 25.5 m/s
Mean particle diameter dP 100 mm
Particle material density rP 2620 kg/m3

Particle relaxation time tR 0.08 s
Particle terminal velocity vt 1 m/s
Coe�cient of restitution for particle-wall collision eW 0.9

Coe�cient of friction for particle-wall collision fW 0.53
Mean inclination angle of virtual wall g 08
Roughness height of channel wall Hr 30 mm
Standard deviation of roughness height DHr 5.3 mm
Roughness length of channel wall Lr 300 mm
Coe�cient of restitution for particle±particle collision eP 0.95

Coe�cient of friction for particle±particle collision fP 0.4
Mass loading ratio Z 0.01, 1, 2, 5, 10
Number of grid cells ÿ 128� 16
Total number of simulated particles NP, tot 10000

Time step Dt 2� 10ÿ5 s
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et al. (1993) showed that the coe�cients of restitution eP and friction fP for the inter-particle
collisions largely a�ect the growth of clusters.
In contrast to the work of Yonemura et al. (1993), only the e�ect of particle±particle

collisions was examined here and the change of gas velocity due to the presence of particles
was not accounted for. In reality, there is always a strong phase coupling, if, the particle
concentration is as high as in the ¯ows considered here. However, the aim of the present work
is to contribute to a better understanding of the mechanisms leading to cluster formation.
Therefore, the advantage is that in a numerical simulation, certain physical e�ects can be
examined separately.
The formation and development of particle clusters in both space and time is a transient

process. For this reason, the motion of particles must be calculated as a function of time, even
if the gas ¯ow is assumed to be steady. The transient particle motion can be computed by
applying the SPT simulation technique, i.e. the simultaneous computation of the motion of all
the simulated particles. The application of the SPT technique along with a stochastic treatment
of particle±particle collisions is often referred to as the DSMC method. This method was ®rst
proposed by Bird (1976, 1994) for the simulation of dilute gas ¯ows. In the present work, the
following technique was used:

1. A representative number of particles is considered in the simulation, i.e. each simulated
particle represents a certain number of real particles.

2. The transient motion of the particle phase is simulated by computing the motion of all
particles in successive time steps.

3. The motion of each particle during a single time step Dt is assumed to be decoupled from
inter-particle collisions. This assumption is valid if, Dt is small compared to mean time
between collisions. If a particle collides with a channel wall during Dt, the particle-wall
collision is carried out according to the rough-wall model mentioned above. Following
which, the calculation of particle motion is continued for the remaining part of the time
step.

4. After computing the collisionless motion of a single particle during Dt, a stochastic
procedure is applied to that particle to account for collisions. This procedure is described in
the next subsection.

The ¯ow domain is divided into cells, which are small as compared to the spatial changes in
the gas ¯ow. The local macroscopic properties of the dispersed phase at a certain time are
obtained by averaging over all particles, that are located in the same cell at that time.

3.1.2. Treatment of collisions
If motion of all the particles is calculated simultaneously, it is theoretically possible to treat

the collisions deterministically. Therefore, after every time step one has to examine for every
pair of particles in the ¯ow ®eld to check for any contact point during the previous step. If
such a point is found, the collision between the two particles can be easily computed. This kind
of deterministic procedure was used by Tanaka and Tsuji (1991) for simulating gas-particle
¯ows in a vertical pipe. However, this way of treating collisions causes a numerical e�ort,
which is proportional to the square of the total number of particles. Even if only the paths of
near neighbours, say of all the particles in one cell, are compared, there is still a
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proportionality to the total number of molecules in the cell. In order to reduce the numerical
e�ort to a linear proportionality, several stochastic procedures have been proposed. In the
frame of the DSMC method, the time-counter method and the no-time-counter method were
developed by Bird (1976, 1989). The time-counter method was also applied to the simulation of
gas±solid ¯ows by Kitron et al. (1989, 1990). Yonemura et al. (1993) used in their simulations
the modi®ed Nanbu method proposed by Illner and Neunzert (1987). All these methods are
based on randomly selecting a pair of particles that are located in the same cell, computing a
collision probability for that selected pair and carrying out the collision according to the
acceptance±rejection method. The methods di�er in the way of determining how many
collisions are actually carried out.
In the present work, a stochastic model was used with collisions taking place not between

two actually simulated particles but between one simulated and one virtual particle. As
decribed above for each time step Dt, the motion of all particles in that time step was
calculated successively. In order to account for the collisions for every particle, a stochastic
procedure was applied after calculating the collisionless motion of that particle. Considering
the two-dimensional case shown in Fig. 1, the e�ective area Aeff swept out by the particle in
the time step Dt, which is small as compared to the mean time between collisions tc, is:

Aeff � deffvrDt, �16�
where deff is the e�ective diameter:

deff � dP � dP0, �17�
with dP0 denoting the mean particle diameter in the surrounding particle cloud, and vr is the
absolute value of the relative velocity between the particle and the surrounding particle cloud:

vr � j~vrj � j~vP ÿ ~vP0j, �18�
with ~vP0 denoting the mean velocity of particles in the cloud. The ``surrounding cloud'' is

effd
eff

r ∆ tv

A

Fig. 1. E�ective area swept out by a particle moving in a surrounding particle cloud.
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assumed to consist of all particles in the cell and the particle is located at the end of the time
step. Hence, dP0 and ~vP0 are obtained by averaging over all particles in the current cell. The
number of particles NAeff

that are located in the area Aeff and thus the number of collisions
with other particles in Dt can be computed from the local number density nP0:

NAeff
� nP0Aeff : �19�

Dividing this value by Dt results in the local collision frequency nc, i.e. the number of collisions
per unit time:

nc � nP0�dP � dP0�j~vP ÿ ~vP0j: �20�
After computing the collision frequency, the collision probability Pc, i.e the probability that the
particle undergoes a collision in Dt, is computed as proposed by OesterleÂ and Petitjean (1993):

Pc � 1ÿ eÿncDt: �21�
The acceptance-rejection method is used to decide, whether a collision actually takes place or
not. Therefore, a random number C 2 �0,1� is generated from a uniform distribution. A
collision is decided to take place if Pc > C:
As already mentioned above, the collision is carried out between the particle currently under

consideration and a virtual collision partner. The physical properties of the virtual partner like
diameter, velocity and angular velocity are chosen according to the mean values for the current
cell. The collision con®guration as shown in Fig. 2 is chosen randomly by generating a
collision angle j 2 �ÿp=2,p=2� from a uniform distribution. The particle's location remains

vr
(1)

y’

x’

P0

P

ω

n t

ϕP0
(1)

ω
P
(1)

Fig. 2. Collision con®guration for particle P colliding with virtual particle P0.
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unchanged during the collision and the post-collision velocity and angular velocity are
computed. Since the particle density rP is much larger than the gas density rG, the collision
time is much shorter than the particle relaxation time. Hence, ¯uid forces can be neglected
during the collision. The post-collision velocities and angular velocities can be calculated by
applying the equations of momentum and angular momentum, respectively:

~v
�2�
P � ~v

�1�
P �

1

mP

~J, �22�

~v
�2�
P0 � ~v

�1�
P0 ÿ

1

mP0

~J, �23�

~o
�2�
P � ~o

�1�
P �

dP

2IP

ÿ
~n� ~J

�
, �24�

~o
�2�
P0 � ~o

�1�
P0 �

dP0

2IP0

ÿ
~n� ~J

�
: �25�

Here the subscript `P' denotes the particle under consideration, the subscript `P0' denotes the
virtual particle, the superscripts (1) and (2) denote variable values before and after the
collision, respectively, ~n is the normal vector of unit length directed from the centre of particle
P to the centre of particle P0 (see Fig. 2) and ~J is the impulsive force exerted on particle P
during the collision. ~J can be decomposed into its normal and tangential components:

~J � Jn~n� Jt~t, �26�

where ~t is the tangential unit vector pointing in the same direction as the tangential component
of the relative velocity between the particles ~v

�1�
r : By subtracting Eq. (23) from Eq. (22),

multiplying the resulting equation with ~n and using the relation between the normal
components of the pre- and post-collision relative velocities:

~v
�2�
r � ~n � ÿeP

�
~v
�1�
r � ~n

�
, �27�

with eP denoting the coe�cient of restitution, the normal component of ~J is obtained by:

Jn � ÿ
�1� eP�

�
~v
�1�
r � ~n

�
1

mP

� 1

mP0

: �28�

Note that Jn is always negative, since �~v�1�r � ~n� is always positive by de®nition, i.e. the normal
component of ~J is always directed towards the centre of particle P. The slip velocity, i.e. the
relative velocity between the surfaces of P and P0, is given by:
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vsl �

8>>><>>>:
~v
�1�
r � ~tÿ oP

dP

2
ÿ oP0

dP0

2
for jr0,

~v
�1�
r � ~t� oP

dP

2
� oP0

dP0

2
for j < 0:

�29�

vsl is de®ned as being positive if it is directed along the same direction as the tangential vector
~t: Note that �~v�1�r � ~t� is always positive by de®nition (see Fig. 2). In order to calculate the
tangential component of ~J, it must be distinguished between non-sliding and sliding collision,
i.e. whether the initial slip between the particle surfaces ceases or not. As shown by Tanaka
and Tsuji (1991) and OesterleÂ and Petitjean (1993) these cases can be determined by:

1. Sliding collision for 0 < jJnjR 2jvslj
7fP

�
1
mP
� 1
mP0

� : jJtj � fPjJnj, �30�

2. Non-sliding collision for jJnj > 2jvslj
7fP

�
1
mP
� 1
mP0

� : jJtj � 2jvslj
7

�
1
mP
� 1
mP0

� , �31�

where fP denotes the coe�cient of friction. Jt is always directed opposite to the direction of slip
velocity and is given by:

Jt �
�ÿjJtj for vslr0,
jJtj for vsl < 0,

�32�

where a positive value of Jt indicates that it points in the same direction as ~t: Thus the
impulsive force ~J is completely given and by replacing it in Eqs. (22) and (24), the post-
collision velocity and angular velocity of the particle P can be computed.

4. Results

4.1. Description of test case

Test case calculations were carried out for gas-particle ¯ows in a horizontal channel. A
sketch of the channel geometry is given in Fig. 3. As shown in this ®gure, the ¯ow is simulated

gas flow

periodic boundary periodic boundary

l

h

Fig. 3. Geometry of horizontal channel for simulation.
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only in a segment of the channel and periodic boundary conditions are used at the left and
right boundary of the geometry. Any particle that crosses one of these boundaries is inserted
again at the opposite boundary by retaining all of its current physical properties.
The gas velocity and turbulence properties were assumed to be identical to a developed

turbulent channel ¯ow and constant over the channel length. These properties were obtained in
a preliminary calculation. As mentioned above, despite the relatively high particle loading
considered in this work, the gas ¯ow properties remained unchanged in the simulations to
investigate just the e�ect of inter-particle collisions.
The physical and numerical parameters used in the present simulations are summarized in

Table 1. Most of the physical parameters were chosen according to OesterleÂ and Petitjean
(1993), who carried out simulations for horizontal pipe ¯ows. The particle size distribution was
assumed to be Gaussian with a mean diameter of dP � 100 mm and a standard deviation of
DdP � 20 mm. In the present work, ¯ows with di�erent mass loading ratios Z were computed.
For Z � 0:01, the ¯ow was assumed to be dilute and particle±particle collisions were not
considered. For all other loading ratios, collisions were simulated according to the stochastic
procedure described above. The particles' initial locations were distributed randomly across the
¯ow domain to achieve a uniform initial concentration distribution. The initial axial velocity
was chosen as 0 m/s and the transverse velocity was obtained as a random number from a
Gaussian distribution with a mean value of 0 m/s and a standard deviation of 1 m/s.
The use of periodic boundary conditions implies that the total number of simulated particles

in the ¯ow domain, NP, tot, remains constant throughout the computation. Also the mean
particle number density, nP0, i.e. the mean number of particles per unit volume, remains
constant, whereas the local number density, nP, changes. The particles are re-distributed in the
course of a simulation due to ¯uid forces, gravity, particle±wall collisions and particle±particle
collisions.

4.2. Results of simulations

In Fig. 4, the vertical distribution of the relative number density nP=nP0 is shown for di�erent
mass loading ratios. The results obtained are compared to those obtained by OesterleÂ and
Petitjean (1993) for a horizontal pipe ¯ow by applying the trajectory calculation technique. The
data of OesterleÂ and Petitjean (1993) was taken at a distance of L � 6 m from the inlet cross
section of the pipe. In preliminary simulations, it had been found that the average time
particles need to move that distance under the given conditions is t � 0:3 s. Accordingly, this
period of time was chosen as the total physical time to elapse in one simulation run. The two-
dimensional distribution of relative number density at t � 0:3 s was averaged in axial direction
for di�erent distances from the channel bottom and the resulting vertical concentration
distribution is shown in Fig. 4.
For the dilute case Z � 0:01, the particle concentration is almost uniformly distributed over

channel height. The particles in the ¯ow are strongly re-suspended due to collisions with the
rough walls at the channel top and bottom. For the pipe ¯ow, the number density in the lower
part of the pipe is higher than in the upper part. In contrast to the two-dimensional
simulations of the present work, in a three-dimensional pipe, a particle colliding with a wall
has one more degrees of freedom concerning the post-collision translational velocity. For this
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reason, the vertical component of the post-collision velocity is generally smaller in a pipe, than
what it is in a channel. Hence re-bounding particles in a pipe ¯ow reach only a smaller height
and the particle concentration in the lower region is higher.
With an increasing particle loading, the concentration pro®le becomes more non-uniform.

The concentration in the upper part decreases with an increase in the lower part. This e�ect is
caused by particle±particle collisions. Particles moving upwards after bouncing against the
bottom wall collide with other particles in the inner region of the ¯ow ®eld. As a consequence,
the maximum height these rebounding particles are able to reach is smaller than in the
collisionless case and thus particles tend to concentrate in the lower part of the ¯ow domain.
Under certain conditions, the maximum number density is observed not closest to the channel
bottom but at a certain distance from that wall (see results for channel ¯ow for Z � 5, Z � 10,
and for pipe ¯ow for Z � 2, Z � 10). In these cases, a kind of ``shielding'' e�ect occurs.
Rebounding particles that move upwards meet particles moving downwards due to gravity. A
zone develops, where a large number of inter-particle collisions take place. Due to these
collisions, the vertical velocity component of upward moving particles is reduced and likewise
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the vertical velocity component of downward moving particles. As a consequence, a region of
higher particle concentration develops and the bottom wall is protected from the impacting
particles. A similar kind of shielding e�ect was reported by Kitron et al. (1989).
In Fig. 5, the pro®le of the mean axial velocity is shown for di�erent loading ratios and for

comparison also, the gas velocity pro®le is shown. Like the concentration pro®le discussed
above also the velocity pro®le was obtained at t � 0:3 s by averaging the local velocity in axial
direction. In the dilute case, the maximum axial velocity is observed below the channel axis,
whereas in all other cases, the maximum velocity is found closer to the axis. In all the cases,
the velocity decreases towards the channel walls. This is due to the particle-wall collisions,
which because of friction and in-elasticity reduce the particles' kinetic energy. Hence, after a
wall collision occurs, a particle's absolute velocity is lower than before and the particle is
accelerated again by the gas ¯ow, as it moves back from the wall into the ¯ow ®eld. In Fig. 5,
it can also be seen that the particles' mean axial velocity increases, as the loading increases.
With an increasing loading, the particles undergo more and more inter-particle collisions.
These collisions cause the vertical component of particle motion to be damped. As a result, the
number of collisions with the channel walls decreases. In other words, the mean time between
two wall collisions increases. Hence the particles spend more time in the inner region of the
¯ow ®eld and can be accelerated by the gas up to a higher velocity.
The particle velocity ¯uctuations in axial direction,

��������
u 0P2

q
, and in vertical direction,

��������
v 0P2

q
,

are shown in Fig. 6. Both these components are found to be reduced, as the particle loading
increases. For the present test case, the deviation of a particle's velocity from the mean ¯ow
velocity is mainly caused by the particle's collisions with the channel walls. As the particle
loading increases, a particle collides more often with other particles. These collisions reduce the
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particle's vertical velocity component, resulting in less frequent wall collisions, and thus a
reduction of velocity ¯uctuations.
For the dilute case, Z � 0:01,

��������
u 0P2

q
is about twice as large as

��������
v 0P2

q
: The di�erence between

the two ¯uctuation components becomes smaller with increasing loading. For Z � 10, both the
components are almost equal. This is consistent with the results of Tanaka and Tsuji (1991) for
a vertical pipe ¯ow. Due to inter-particle collisions, which occur more frequently at higher
loadings, particle momentum is increasingly exchanged and redistributed among the particles,
as the loading increases.
The range of the particle Reynolds number for the present simulations was found to be

ReP110±200: Hence Eqs. (6) and (9), which were taken as estimates for the lift forces, are not
applicable. However, as an e�ect of gravity and irregular bouncing with the channel walls, the
motion of the particles is a zig-zag motion. That is, while moving in the direction of the mean
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¯ow, particles undergo frequent collisions alternately with the bottom and top channel walls.
For the dilute case, the mean absolute value of the particle vertical velocity component is
jvPj � 2:2 m/s. The average time gap between two wall collisions is 0.01 s, which is well below
the particle relaxation time. As the particle loading increases, the average time between wall
collisions increases as well. At the same time, the mean time between particle±particle collisions
decreases. For a mass loading ratio of Z � 10, the mean time between inter-particle collisions is
of the order of 10ÿ3±10ÿ2 s, which again is well below the particle relaxation time. Hence it
can be assumed that for any case, the inertial e�ects and/or the e�ects of particle±particle
collisions are dominant and the e�ects of the aerodynamic lift forces can be neglected. For this
reason, the error made by the wrong estimate of the lift forces is believed to have no impact on
the computed results.
The integral time scale TE of ¯uid turbulence for the present channel ¯ow is of the order of

10ÿ3 s, and the integral length scale LE is of the order of 10ÿ3 m. Considering the mean
absolute value of the particle vertical velocity component of jvPj � 2:2 m/s, the mean crossing
time TCr is also found to be of the order of 10ÿ3s. Both TE and TCr are more than an order of
magnitude smaller than the particle relaxation time, which in the present case is tR � 0:08 s.
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Therefore, it can be assumed that the turbulent ¯uctuations of the gas velocity only have a
minor in¯uence on the particle motion.
The development of particle concentration distribution in space and time for the di�erent

loading ratios is shown in Figs. 7±11. In each of these ®gures the distribution of relative
number density nP=nP0 in the channel is given at seven di�erent times. Note that for the reason
of a more convenient representation, the channel geometry is shown compressed in horizontal
direction. As mentioned above, all simulations start with a randomly generated particle
distribution, i.e. at t � 0 s is nP=nP011 all across the channel. After starting the simulation, the
particles are accelerated in a horizontal direction by ¯uid forces and in downward direction by
gravity. The latter is the reason for the increase of number density in the lower half of the
channel, which can be observed for all loading ratios at t � 0:05 s. For the dilute case Z � 0:01,
which is shown in Fig. 7, this in-homogeneity in the vertical concentration distribution can still
be found at t � 0:1 s. As the simulation for Z � 0:01 progresses further, the concentration
becomes almost uniform again, because the particles are redispersed due to irregular bouncing
with the channel walls.
In contrast to the dilute case for the cases of Z � 1 and Z � 2 the inhomogeneity in vertical
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concentration distribution is not observed anymore at t � 0:1 s (see Figs. 8 and 9, respectively).
Obviously, for these loading ratios particles are redispersed quicker. This is a result of the
momentum exchange induced by particle±particle collisions. Particles that have bounced
against the bottom wall in an early stage of the simulation move upwards and collide with
particles that still move downwards. Thus particles are redistributed evenly. For Z � 1, the
concentration distribution remains almost uniform throughout the rest of the simulation. For
Z � 2, the development of a region of higher concentration can be observed. The center of this
region is located close to the channel axis and the maximum number density in this region is
about three times higher than the mean number density.
For the loading ratios of Z � 5 (see Fig. 10) and Z � 10 (see Fig. 11), the inhomogeneity of

concentration distribution in vertical direction at t � 0:05 s appears more distinct than in the
cases discussed before. Furthermore, the inhomogeneity does not vanish in the course of the
simulation. The particle ¯ow becomes even more and more inhomogeneous also in horizontal
direction. Local areas of high concentration develop; where the relative number density rises
up to nP=nP017: These areas may be called ``clusters'', although in a non-compressed image,
they rather look like ``garlands''. Clusters seem to formate and grow around ``cores'', i.e. small
local areas of higher number density induced by stochastic concentration ¯uctuations. Particles
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penetrating a cluster can be ``captured'', since the large number of collisions they undergo there
cause their momentum to be adapted to that of the cluster particles. The center of most
clusters is located between the channel axis and the bottom wall. This corresponds to the
horizontally averaged data shown in Fig. 4. As one can see in Figs. 10 and 11, clusters do not
constantly grow, but also thin and vanish. In the process of cluster breakup, the interaction of
cluster particles with the bottom wall seems to play an important role.
A quantitative measure of the inhomogeneity of concentration distribution is given by the

root mean square of the ¯uctuation of relative number density nfluct, RMS, which is computed as
follows:

nfluct, RMS �
��������������������������
nP

nP0
ÿ 1

�2
s

: �33�

In Fig. 12 nfluct, RMS is shown, as it develops in time for all loading ratios considered in this
paper. The value of nfluct, RMS at t � 0 s corresponds to the homogeneous concentration
distribution obtained by randomly distributing the particles in the ¯ow ®eld. As already seen in
Figs. 7±11, inhomogeneity increases at the beginning of the simulation for all loading ratios.
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For the dilute ¯ow, the maximum of nfluct, RMS is reached at about a � 0:075 s. After that
nfluct, RMS decreases down to the level of a homogeneous distribution, which is reached at about
t � 0:2 s. In contrast to the dilute case for Z � 1 and Z � 2 the maximum of nfluct, RMS is lower
and also the ¯ow becomes homogeneous much quicker. Obviously in these cases, particle±
particle collisions enhance dispersion. The collisions damp the development of in-homogeneities
and enhance their dissolution. For Z � 5 and Z � 10, the initial increase in nfluct, RMS is stronger
than in the other cases. Furthermore, after reaching its maximum at t � 0:05 s nfluct, RMS is only
partly reduced. For Z � 5, it remains almost constant on a higher level, whereas for Z � 10, it
even increases again for t > 0:175 s. In these two cases, inter-particle collisions enhance the
development of an inhomogeneous concentration distribution and damp the dissolution of
inhomogeneities.

5. Conclusion

Simulations of gas±solid ¯ows in a horizontal channel were presented. The simulations were
transient applying the Simulataneous Particle Tracking technique. Particle±particle collisions
were accounted for using a stochastic model. Simulations were carried out for di�erent particle
loadings in order to examine the in¯uence of loading and collisions on the motion of the
particle phase. The change of gas ¯ow properties due to the presence of particles was not
considered.
Particle-particle collisions were found to have a signi®cant e�ect on the particle

concentration distribution in the channel. For particle to gas mass loading ratios of Z � 1 and
Z � 2 collisions tended to enhance particle dispersion, whereas for higher loading ratios of Z �
5 and Z � 10, collisions enhanced the development of ``clusters'', i.e. local areas of higher
particle concentration.
In the simulations presented in this paper, mass loading was the only variable parameter. Of

course, there are many other physical and geometrical parameters that may in¯uence the ¯ow
behaviour signi®cantly, e.g. particle size and shape, gas velocity, channel size, phase coupling
and so on. Hence, many more simulations as well as experimental investigations are required
to understand the mechanisms of cluster formation and development.
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